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Velocity and temperature boundary layers developed on a plane wall by ideal 
shock-tube flow are considered for weak shock and ex pansion waves. Analytically, 
the boundary layer consists of three regions, bounded by (1) expansion-wave 
head, ( 2 )  diaphragm location, ( 3 )  contact discontinuity, (4) shock. The flow 
fields (1,2) and (3,4) are, essentially, known. In  the interaction region ( 2 , 3 ) ,  
these flow fields merge, the governing equations are ‘singular parabolic’ and 
admit boundary conditions usually associated with elliptic equations. It is 
convenient to replace the weak expansion wave in the main flow by a line dis- 
continuity. A consistent linearization scheme can now be devised to obtain the 
solution in the three regions. In ( 2 , 3 ) ,  the resulting linear singular parabolic 
equations for the first-order solutions are solved successfully by an iterative 
finite difference method, normally applied to elliptic equations. 

1. Introduction 
The unsteady one-dimensional flow pattern that develops in the ideal shock 

tube has been known in its essentials since Riemann’s famous paper in 1860. 
This flow develops, after the diaphragm initially separating high (z < 0) and 
low pressure (z > 0) motionless gases in the tube has been removed at t = 0. 
The well-known (x, t)-diagram of the motion is shown in figure I with the initial 
diaphragm position at  the origin of the (x, t)-plane. The resulting boundary layer 
at t = t* is also sketched. 

Here we consider the velocity and enthalpy boundary layers developed on 
a plane wall by the ideal outer flow pattern. However, we treat only weak waves 
so that the expansion region E W can be approximated by a line discontinuity 
across which the isentropic expansion-fan relations hold. This situation is shown 
in figure 2 .  

Several authors have considered the boundary layer developed by parts of 
the shock-tube flow. Mirels (1955) examined the boundary layer behind a shock 
advancing aIong a plane wall into a stationary fluid. His solution is limited to the 
part of the boundary layer beneath the region M in figures 1 and 2.  Cohen (1957) 

t At present at the University of Rostock, G.D.R. 
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considered the boundary layer developed by a centerd expansion fan advancing 
into a stationary fluid which is exactly the case in region E W of figure 1. Mirels 
(1956) extended his previous work to boundary layers behind infinitely thin 
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FIGURE 1. Ideal shock-tube flow. 
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FIGURE 2. Weak wave shock-tube flow. 

expansion waves as is the case of region L of figure 2 .  Becker (1 962) attempted 
to extend the validity of Cohen's (1957) solution to the L-I boundary by a con- 
tinuation procedure. 

Thus, the boundary layer beneath region M has been well discussed, those 
beneath regions EW and L have been approximately treated while the mathe- 
matically more difficult region I has been neglected entirely. It is for this reason 
that in the present work we concentrate wholely on the I region ( I  denotes 



Interaction region in the boundary layer of a shock: tube 111 

‘interaction’ between the L and M regions as in Lam & Crocco (1958)), and 
approximate the EW region as in figure 2. 

Two papers are of interest for the boundary-layer study in the I region. 
Stewartson (1951) studied the fluid motion induced by the uniform motion of 
a semi-infinite plate in its own plane ( x  > 0). The plate velocity U, is acquired 
suddenly at  t = 0. He found that for the region 0 < x < U,t boundary conditions 
must be enforced at  each ‘end ’ of the region of interest (as x-+ 0 the boundary- 
layer solution must approach the Blasius solution; as x + U,t i t  must approach 
Rayleigh’s solution). Later, Stewartson (1960) gave an interesting interpretation 
of this behaviour. It will be shown that in the present problem again two boundary 
conditions must be enforced for the boundary layer of the I region, in addition 
to the usual wall and free-stream conditions. Lam & Crocco (1958) discussed the 
more general problem of a shock advancing past a semi-infinite flat plate. (For 
the special case of weak shocks, the problem becomes identical with Stewartson’s.) 
Using the boundary-layer equations in the Crocco form, they also found that 
in the general problem two boundary conditions must be enforced at  x = 0 and 
2 = U,t, where U, is the free-stream flow velocity of the fluid following the 
shock. They termed this region ‘the interaction region ’, and the boundary-value 
problem ‘singular-parabolic’, following Gevrey (1914). It will be shown that 
the variables used by Lam & Crocco represent well the singular nature of the 
I region also in the present problem. 

2. Formulation 
We make the following assumptions : the two-dimensional laminar boundary- 

layer equations are valid; diffusion at  the contact surface is negligible; the wall 
temperature, T,, equals the initially uniform gas temperatures; the specific-heat 
ratios, k, and the Prandtl numbers, v, are constant and equal for both gases. 
Also, Us, cl and U, are constant (see figure l), as required by Riemann’s solution; 
and so are the parameters 

A = U,/U,, 3 = cJU,. 

Crocco and others have used the dependent variables shear stress and specific 
enthalpy in boundary-layer problems: 

au 
aY 

r = p -  = ~ ( x , u , t ) ,  h=h(x ,u , t ) .  

Here x is the distance along the wall, measured from the diaphragm location, 
u is the velocity component parallel to the wall, and t the time. In terms of these 
variables, the boundary-layer equations are 

ah ah 
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The boundary conditions at the wall (u = 0,  h = hw), and at the free-stream 
boundary (a = U,, h = h,), lead to 

(g), = 0, h(x, 0, t )  = h,, 

7(5, u,, t )  = 0,  h(z, v,, t )  = h,. 

The constant h, (essentially the free-stream temperature) has different values 
h$) and hg) in the M region and in the I and L regions, respectively: hg) > h$). 
The quantities Uo, Us, h,, h,, A ,  B, are determined by the two parameters: initial 
pressure ratio, pJpr, and wall temperature, Tw. 

New dimensionless independent and dependent variables 

a=- 2 p = - ,  U y = - ,  Pw u:t 
PW UO Uot’ (2.3) 

7 - #(a,P) , H = - -  h-h, - H(a,P)  (ie. aH = 0) ,  (2.4) 
P 7 0  - 77- hW aY 

are now introduced. Here we have anticipated the self-similar time-dependence 
common to shock-induced boundary-layer problems (see Rott 1964 ; Stewartson 
1964, or Lam & Crocco 1958); for, on introducing (2.3) and (2.4) into (2.1), 
the governing equations become 

with boundary conditions 

a# 
- (a, 0) = 0, aP H(a ,  0) = 0, 

( 2 . 5 ~ )  

(2 .5b )  

(2 .6)  

-= h‘) - h~ H, ( M  region), 

#(a, 1) = 0, H(a,  1) = H, = 
[;w- h(1) - h - H, ( I  and L regions) 

This form of the equations, where ( 2 . 5 ~ )  is decoupled from (2 .5b ) ,  presupposes 
validity of the viscosity law pp = pWpw (Chapman-Rubesin). 

The singular parabolic nature of the equations in the I region can now be seen. 
While in the M region, 1 < a < A ,  and in the L region, 0 2 a - B, the co- 
efficient of the a-derivative in (2.5) has a constant sign, in the I region, 
0 < a < 1, the coefficient of the a-derivative may take on both signs on 0 < /3 < 1. 
In  this region the boundary-layer equations permit two boundary conditions 
along the ‘vertical ’ edges. This formulation is mathematically correct, at  least 
for the linearized problems (3.7), (3.1 8), and was already foreseen as a mathemati- 
cal possibility in Gevrey’s (1914) treatise (see Ban 1967). 

We now write out the specific forms of (2 .8 )  in the three regions of interest 
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and notice that in the M and L regions, the a- and P-dependences may be 
separated as follows. 

(2.7) 

( 2 . 8 ~ )  

(2.8b) 

(2.9) 

(2.10a) 

(2.10 b )  

The forms (2.7) and (2.9) represent Mirels’ similarity ‘ ansatz ’ in Crocco variables. 
The problem in the I region (0 < a, /3 < 1 )  can now be written out completely: 

(2.1 1 a )  

with boundary conditions 

a$ 
aP 
-(a,O) = 0, H(a,O) = 0, $(a, 1 )  = 0, H(a,  1) = HI,  ( 2 . 1 2 ~ )  

(2.12 b )  

The free-stream temperature jump across the contact discontinuity produces 
here a discontinuity (cf. (2.8)),  

1 q5(0,P) = L(P), $(1,P)  = M(P), 

H(O,P) = HL(P), H ( 1 , P )  = &r(P). 

limH(a, 1 )  = HI < lirnH(1,p) = H,, 
a-1 8-1 

(2.13) 

not unusual in heat-conduction problems. 
We may compare this problem with that considered by Lam & Crocco (1958), 

which was described earlier. The two problems coincide in the M region where, 
as Lam & Crocco and Stewartson (1960) pointed out, the solution is independent 
of the I region. Also, Mirels solved the same problem in 1955. However, Lam & 
Crocco had no L region in their problem ; instead, the shear stress had to approach 
Crocco’s well known flat-plate solution as a --f 0. In  the present case the solutions 
in L and M must be known before the I region can be attacked. A further com- 
plication is the free-stream temperature jump across the contact discontinuity, 
which influences considerably the character of the solution for q5 and H in the 
1 region. 

8 Fluid Mech. 38 
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Seen from the viewpoint of modern analysis, uniqueness and existence of the 
solution to the linearized version of the present problem can be formulated by 
means of Friedrichs's (1958) theory (see appendix); and it has now received its 
proper place in the context of recent achievements in the theory of differential 
equations. 

3. The linearized problem 
3.1. The momentum equation 

The parameters A and B in (2.7) and (2.8) determine the total length of the 
boundary layer at  t = t* (see figure 2). From the definition of A and the well- 
known relation between shock speed and trailing gas velocity (see Courant & 
Friedrichs 1948, p. 151), we can write 

and, with the definition of B = cl/Uo, we have 

from ideal shock-tube theory. From this we can note that the shock Mach number 
is given by 

and M,2 + 1 > B2+ A2 3 A2-$(k+ 1) A + A2, 

so that M,2 2 1 requires A B 1 (weak-wave condition), and B - A .  Thus, the 
following expansions are proposed to produce a systematic linearization simul- 
taneously in the three regions: 

with 

used in (2.10). Substituting these expansions into the governing equations (2.8), 
(2.10), and (2.11) gives in the order (l/A)O, 

Thus, to zeroth order, the shear stress is everywhere independent of a and satisfies 
the same two-point boundary-value problem 

q$-J$g+g = 0, &(O) = $ o ( l )  = 0. (3.2) 

The solution to (3.2) is known. Denoting the inverse of the error function, 
y = erf-l(z), by fre(z) ( - 1  < x < I) ,  we have 
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as definition of fre (2). Thus, 

In  the order of ( l /A)  we get the first-order problem in the M and L regions: 

M'; - in exp [2 fre2 (p)] Ml = (p- 1) +Jn exp [frez (p)], 
M;(O) = 0, N1(1) = 0; (3.5) 

L'; - $7 exp [2 fre2 (p)] Ll = &3&r exp [fre2 (p)] ,  
L;(O) = 0, Ll(l) = 0. (3.6) 

The two functions Ll and HI yield the first-order boundary conditions on the 
function $,(a,/3) in the I region. Equations (3.5) and (3.6) are again two-point 
boundary-value problems, but /3 = 1 is now a singular point of the equations, 
since fre (1) = 00. Its solution, together with the determination of fre (p) and 
#,,(p), will be discussed in a later section. 

The first-order problem for $1 in the I region can now be set up: 

( 3 . 7 4  

(3.7b) 

Equation ( 3 . 7 ~ )  is a linear, singular parabolic equation. Thus the boundary 
conditions can be prescribed on all four sides of the quadratic I region. Once 
#,, Ll and Hl are known, the solution of problem (3.7) should be possible. 

3.2. T h e  energy equation 

The governing energy equations are treated in the same manner. We write again 

and also expand H, - Ifl in terms of (1/A) as 

2(k -  1 )  
H, = H l + -  A +..., 

for the boundary condition in (2.8 b) .  The constant Ug/h, in the energy equations, 
which depends on the data pT/pl and T, and arises from viscous dissipation, 
must be replaced according to 

k -  1 - - - 
u; - (k-1)Mi  
h, A2 

- 

Substituting and ordering in (1/A) gives in zeroth order 

%" = H M O  = SO(P), 
8-2 
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where go(p) is to be determined from 
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As before, the fist-order problems can now be written in the M and L regions: 

55 HMl - (1 - ;) &H&* = (1 - ;) M ;  g; - M1; 96 , 
cr 

HMl(0) = 0, HMl(l) = 2(k- 1); (3.10) 

L;g;-L,-, 96 HL1(0) = 0, HLI(l) = 0. cr 
(3.11) 

The first-order problem in the 1 region is 

(3.12 a) 

91(a, 0) = 0, 91@, 1) = 0, S l ( 0 , P )  = HLl(P)l S l ( L P )  = &!fl(P). (3.126) 

This again is a singular parabolic equation. The function g,(a, p)  can be deter- 
mined once HL, and HMl have been found from (3.10) and (3.11). 

For the purpose of a numerical example built on the zeroth and first approxi- 
mations only. and in the interest of simplifying equation (3.12a) without 
changing its singular character, we take the Prandtl number, cr, equal to one. 
With this, the zeroth energy equation (3.8) becomes 

#096 = 0, go(0) = 0, go(1) = Hl, (3.13) 

with solution 90 = HlP. (3.14) 

The corresponding first-order problems are 

= -M1g;l = 0; HM1(0) = 0, H,(1) = 2 ( k -  l), (3.15) 

= 0; HLl(0) = 0, HL1(l) = 0. (3.16) 

The solutions to (3.15) and (3.16) are seen to be 

Hnir, = 2(k- 1)p; HL, = 0. (3.17) 

The simplified fist-order energy equation in the I region with completely 
defined boundary conditions can now be written down: 

(3.18a) 

Sl(Q,O) = 0, g,(a, 1)  = 0, Sl(0,P) = 0, Sl(1,P) = 2(k- I ) P .  (3.186) 

Note that the free-stream temperature jump across the contact discontinuity 
(cf. (2.13)) is still in the boundary conditions (3.18b). 
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4. Numerical solution 
We first take up the numerical determination of fre(p) defined by (3.3). 

The Runge-Kutta-Gill method was used to integrate this equation numerically 
instead of inverting the error function. Once fre (p) is known the zeroth-order 
shear stress given by (3.4) can be computed pointwise. The functions fre(p) 
and $,,(p) are shown in figure 3. 

2.0 

1 6 

P 
FIGURE 3. The functions fre(P) and do@. 

The functions M,(B) and L,(p) give the p variation of the first-order shear 
stress in L and M .  It is to be noticed that both equations (3.5) and (3.6) have 
essential singularities at p = 1, making the numerical solution difficult. Although 
not designed for singular problems, the method of factorization of Ridley (1957) 
was found to be successful. Ridley replaces the second-order equation by three 
first-order equations that automatically satisfy the two-point boundary con- 
ditions if the starting values (Ll(0), M,(O)) can be guessed. Initial approximations 
to  these starting values were obtained from approximate predictor-corrector 
solutions to these equations. The initial approximations were then adjusted 
until the boundary condition at  p = 1 was satisfied to six decimal places. The 
functions M l ( p )  and Ll(p) obtained in this manner are shown in figure 4. 

The determination of the fist-order functions in the I region requires the 
solution of the singular parabolic differential equations (3.7) and (3.18) and is 
considerably more difficult. Standard ‘forward marching ’ parabolic techniques 
cannot be used. Instead, numerical methods normally used in elliptic problems 
must be applied. The technique used will be outlined here; the details can be 
found in Ban (1967). 

If one replaces (3.7~5) and (3.18~5) by a set of difference equations, following 
e.g. Forsythe & Wasow (1960), one notices that an important condition is not 
satisfied: due to the parabolic form of (3.7) and (3.18), the coefficient matrix of 
the set is not diagonally dominant. Because of this, all standard explicit iterative 
techniques (those in which the kth approximation to the unknown at a point can 
be determined from knowledge at  hand explicitly) that depend heavily on 
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diagonal dominance for convergence (simultaneous displacements, Gauss-Seidel, 
successive over-relaxation, etc.) will not succeed. 

There are, however, implicit techniques in which, within the set of the un- 
known function values at  the mesh points, blocks of unknowns are defined by 
the iteration, so that the kth approximation to any member of the block is known 
implicitly after all members of the block have been determined simultaneously. 

0.20 I- 

0.15 - 

0.10 - 

0.05 - 

0.00 I I 

0.00 050 1 .oo 
0.00 L I Y 

0.00 050 1 .oo 
P 

FIGURE 4. The first-order boundary conditions. 

5 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

$,(a 
0.56419 
0.55075 
0.54637 
0.52382 
0.491 7 1 
0.33940 
0.39593 
0.32974 
0.24819 
0.14586 
0~00000 

M I ( [ )  
0.17960 
0.17672 
0.16861 
0.15601 
0.13956 
0.1 1989 
0.09763 
0.07345 
0.0481 1 
0.02273 
0~00000 

LlK) 
0.10240 
0*10306 
0.10447 
0.10580 
0.10619 
0.10469 
0~10020 
0.09127 
0.07581 
0.04999 
0~00000 

$1(5N 
0.10240 
0.07364 
0.04583 
0.0261 7 
0.02667 
0.04342 
0.06759 
0.09512 
0.12315 
0.151 18 
0.17960 

TABLE 1. Summary of numerical results 

1/8(5)  

3.457 
3.475 
3.492 
3.510 
3.523 
3.531 
3-535 
3.538 
3.543 
3.560 
3.691 

The implicit technique of  successive displacements by lines (see Forsythe & Wasow 
1960) was found to be rapidly convergent in the case of both the momentum 
and energy equations. In this method, the successive-displacement iteration 
takes place between blocks of unknowns (in our case, lines of constant /3) while 
within each block the function values are solved for simultaneously from a 
linear subsystem relating the members of that block. This method is not so 
heavily dependent on the character of the coefficient matrix alone, but rather on 
the way in which the unknowns are broken up into blocks. The convergence rate, 
although adequate, was improved markedly by using a direct solution obtained 
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by Gauss elimination for a very coarse mesh (100 points, step size 0.1) as the initial 
guess to start the iteration. The functions dl(a,P) and ql(a,P) (for k = 1.4) 
obtained in this manner are given in figures 5 and 6. A summary of numerical 
results is contained in table 1. 

FIUURE 5. The fist-order shear stress in the I region, $l(a, /3). 

0.8 
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0.4 
g1 
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0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

a 

FIGURE 6. The first-order enthalpy function in the I region, 
gl(a,/3) (a = 1, k = 1.4). 
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5. Results 
With the solution for the first-order functions completed, we can now examine 

the resulting behaviour of the solution in terms of the physical variables of 
interest for a particular set of parameter values. We examine the flow resulting 
from the initial conditions 

pJpT = 1.35, Tw = 293.2K, pl = 1 atm. 

From these, together with the inviscid shock-tube relations and the perfect-gas 
state-equation, the following quantities are found: 

polpr = 1.16, Uo = 120*9ft./s, V, = 1202*9ft./s, 

A = 9.95, B = 9.33, M, = 1.06, Hl = -0.0422, 

for an air-air shock tube (k = 1.4). 

tube ( -  B < a < A )  for this case. By writing (from (2.7) and (2.4)) 
We first show the variation of the wall shear stress for the complete shock 

we have to first order 

This dimensionless wall shear is shown in figure 7. 

plane. From the definition of the transformed variables, 
We now take up the inversion of the velocity to the actual physical (x,y)- 

so that 

and, for a perfect gas (R  = gas constant) 

PwPw Rh P W P W  k - 1 
- ( k ) (hWH+hW) ,  

p = P&.!!KW = ~ 

P CP Po Po 
on approximating $ by $(l) and H by H(l), we have for the dimensionless ordinate 
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Here #l)(a,P) is given by (5.1) and H(Q(a,p)  is given by (5.3) 

I I I I I I I I I I I 

--B -8 -4  0 4 8 A  

U 

(a )  

t 

121 

(5.3) 

0.55 ' 1 1 

0.0 0.4 0.8 1.2 

a 

( b )  

FIGURE 7. Wall shear stress (a)  throughout entire flow field, 
(b )  in I region. 

I n  evaluating the dimensionless ordinate ~ ( a ,  u/Uo), the integral appearing in 
(5.2) was evaluated at  fixed a for various /3-values, essentially by a Simpson- 
rule procedure. This gives profiles at  various a of r(a,u/UO), which may be 
regarded as velocity profiles (u/Uo) (7) at various locations a in the shock tube 
(figure 8). The profile near the expansion was evaluated at a = ( -  0-99B) and 
near the shock at a = (0.99A). The results show that the boundary layer is quite 
thin near A and - B and thickens away from them. The general profiles are dl 
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smooth and validate the assumption implicit in the Crocco transformation that 
u(z, y, t )  is a monotonically increasing function of y through the boundary layer. 
The correct velocity profiles in the L and M regions should be self-similar 
according to Mirels' (1956) results (see remark after (2.10b))' but the present 
profiles, being only approximations of first order, are not strictly self-similar. 

3 

2 
I1 

1 

0 

a = ~  J 3 

0 1 

I 

- 
" 0  1 

4 uo UI UrJ Ul uo 
( a )  ( 6 )  ( c )  

FIGURE 8. Velocity profiles (a) in L region, ( b )  in I region, (c )  in M region. 

I I I I  , I , ,  

4 8 A  -.g -8 - 4  0 

a 

FIGURE 9. Variation of boundary-layer thickness. 

We can now examine the variation in boundary-layer thickness over the 
length of the tube. Taking the boundary-layer edge to be at  p = 0.99, we can 
determine the variation of q(a, 0.99) = ys (figure 9 and table 1). 

We note the interesting fact that, near the contact discontinuity (0.9 < x < I) ,  
there is a rapid but continuous (see figure 11) thickening of the boundary layer 
with the maximum boundary-layer thickness occurring at  x = 1.0. Since 

/3) does not vary rapidly with a in this region, the behaviour of the result 
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of the integration (5.2) is caused mainly by the temperature jump in the boundary 
condition. From (5.1) and (5.2) we have 

FIGURE 10. 
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0.4 
P 

0.2 

0 0  
0.0 0.2 0.4 0.6 0.8 1 .O 

First-order isotherms as obtained from the numerical solution 
a 

3.7 

I I  
3.5 

e 

3 4  

- 

- 

- 
I M 

I I 1 I 

0.7 0.8 0.9 1.0 1.1 1.2 
U 

FIGURE 11. Boundary-layer thickness near a = 1. 

where we retain only terms up t o  first order in 1/A. This leads to 

From figure 6, the slopes ag/aa are seen to practically vanish for 0 < a < 0.4. 
Here ys must be nearly constant. If we now compare contributions of the same 
dc to the integral in (5.4) for al, a2, with al < a2, then from figure 6 it is seen that 
the second contribution is always greater than the first. This implies that  dv81da 
increases with 01 and the qs curve is concave upward, at least from some a-value 
on, up to a = 1.0. Thus, the rapid steepening of the 7 8  curve is a direct consequence 
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of the singularity of the thermal boundary conditions at  the point a = p = 1.0 
(i.e. the location of the temperature jump), where the slopes (a/aa) [gl(a, /I)] 
become large and dominate expression for 8r8/aa. The same result could be read 
off figure 10, which shows the crowding of the first-order isotherms in the 
neighbourhood of a = p = 1. This phenomenon is typical for certain parabolic 
problems with a jump discontinuity in the boundary values. Figure 11 illustrates 
the growth of qs(a) by a large-scale diagram of the numerical results (table 1) 
neara= 1. 

6. Conclusion 
The problem of the shock-tube boundary layer has been treated by a systematic 

linearization scheme that shows directly the singular parabolic nature of the 
governing equations. An important result is the applicability of the ‘Crocco 
variables’ to the numerical solution of the shock-tube problem despite the 
crowding at  the boundary-layer edge, p = 1. The solution of the governing equa- 
tions has been carried out in all three regions of the problem in this same set of 
variables, which is particularly advantageous, because the equations then 
evidence explicitly the analytic character of the problem. 

The numerical results obtained for the example problem indicate that, 
physically, the effect of the contact discontinuity is small, at  least for the case 
of weak shocks. The only apparent effect is a layer thickening that is less than 
5 yo of the total thickness near the M-I boundary with a continuous transition 
of the thickness parameter from L to I to M .  This, as well as the zero-order a- 
independent solution, shows further that (to first order) there are no boundary- 
layer eruptions in the interaction region and that any such behaviour must 
enter as a higher-order effect. 

The work also demonstrates that the numerical solution of a singular parabolic 
equation is possible when a particular numerical method devised for elliptic 
equations is used. We know of no example in numerical analysis for this type of 
partial differential equation. 

The retransformation of the solution from the Crocco plane to the physical 
plane gave velocity profiles throughout the whole boundary layer, including the 
behaviour near the contact discontinuity. 

Finally, the place of the linearized problem within current theory of differential 
equations is pointed out in the appendix. 

From the standpoint of usefulness, the major limitations of the study are: 
consideration of a shock tube with the same driver and driven gas; limitation 
to weak expansion waves. This latter restriction was introduced mainly to 
permit concentration of the numerical effort on the linear problem in the I region. 
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Appendix 
For a thorough discussion of the existence theory of (3.7) in terms of Friedrichs 

(1958) andGevrey (1914), we must refer the reader to Ban (1967). Here only those 
results that follow readily from Friedrichs’s study for our case will be presented. 

Problem (3.7) for q51(a, p)  can be made to fit into Friedrichs’s algebraic scheme, 
when the homogeneous second-order equation (3.7 a )  with inhomogeneous 
boundary conditions (3.7 b )  is replaced by the inhomogeneous first-order pair (in 
matrix notation) 

Here P(p)  = 4[q50(p)]-2 is positive for 0 6 p < 1 and not bounded; u1 = - U, 
u2 = - Up; U = q51(a, p) - F(a,  p) ;  z = F(a,  p )  is the ruled surface generated by 
sliding a straight edge, which is parallel to the (a, 2)-plane, along the boundary 
curves z = I+(@) above a = 0 and z = Ml(p)  above a = 1;  and 

According to Friedrichs’s theory, admissible boundary conditions for the 
rectangular domain 0 6 a 6 1, 0 6 p < 1--E, E > 0 are 

U(0 ,P)  = U ( l , P )  = U(a ,  1 -€ )  = Up(a, 0 )  = 0. (A 2) 

Admissible boundary conditions imply existence of a weak solution and unique- 
ness of a ‘classical) solution if it exists. The actual (physical) boundary con- 
ditions for gl, (3.7b)) are obtained if we put E = 0. However, whether this is 
a permissible step is not obvious and requires a mathematical investigation 
beyond the scope of this work. 
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